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A new approach to the calculation of thermodynamics and 
structure for classical one-dimensional systems with pairwise 
additive potentials in an external field 

J H Nixon 
School of Mathematics and Physics, University o f  East Anglia, Norwich N R 4  7TJ, U K  

Received 31 July 1985, in final form 7 April 1986 

Abstract. A new approximation scheme has been derived for classical statistical mechanics 
of one-dimensional systems with pairwise additive potentials in an  external field. It enables 
both the thermodynamic functions and the static correlation functions to be obtained. The 
analysis depends on  combining the recurrence relation of Baxter with an  extension of the 
analysis of functional differential equations started by Volterra. 

1. Introduction 

There have been many one-dimensional models in classical statistical mechanics from 
which exact results for the correlation functions and thermodynamic properties have 
been obtained. By this I mean results which give a practical procedure for the numerical 
evaluation of these properties. For a review of much of this work for the uniform 
case, i.e. in the absence of an  external field, see the first chapter of Lieb and Mattis 
[ 13. A lot of work has also been done on non-uniform fluids, much of which has been 
summarised by Percus [2]. This includes the rigorous treatment of the ideal gas and 
the gas of hard rods in an external field. 

In  this work I have been trying to use the idea Baxter first put forward [3] which 
is to derive a recurrence relation for the configuration integrals by differentiating them 
with respect to the length of the system, combined with an extension of the work on 
functionals and functional differential equations which has been compiled by Volterra 
[4], to proceed as far as possible with the exact analysis of the class of systems for 
which Baxter’s recurrence relation holds, namely one-dimensional systems with a 
pairwise additive potential and an  external field. To this end I have had partial success 
in that I have had to make one approximation but the theory is otherwise exact and 
general. It is also encouraging to find that the resulting approximation scheme for the 
uniform fluid is simple to use but a systematic study of the accuracy of the method 
by comparing it with other approximations and  with Monte Carlo calculations remains 
to be done. 

The arrangement of this paper is as follows. In 5 2 the definitions and notation are 
briefly stated and an  expression for the pressure is obtained from a grand canonical 
average and  it is indicated how all the thermodynamic functions can be obtained from 
this. In § 3 a general argument is used, which is essentially equivalent to the one given 
by Baxter, to derive an  equation for the grand partition function. The criterion that 
any approximation to this gives the correct pressure follows easily. One approximation 
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652 J H Nixon 

is suggested for which a plausible argument suggested that it might give correct results 
in the thermodynamic limit but it turned out to be false. However the fact that this 
approximation, a functional differential equation ( FDE), turned out to have a remark- 
ably simple solution and  that other approximations could lead to other FDE led me to 
investigate in § 4 the general treatment of FDE of the first order. A subset of these is 
identified which has a particularly simple solution which is developed in detail in 5 5. 
In  8 6 a special case of this is used to solve the approximation mentioned above and 
equations are derived from this for calculating the pressure and the correlation functions 
n ,  and n 2 .  Further simplifications arise from assumptions made about the behaviour 
of these functions in the thermodynamic limit. This results in simple expressions for 
the pressure and the radial distribution function. Finally in 5 7 some concluding 
remarks are given. 

2. Definitions including a general expression for the pressure 

The grand partition function for the one-dimensional classical gas is 

where the system has length L with the N-particle Hamiltonian H,,  the chemical 
potential p and h is Planck’s constant. Also the standard notation p = l / k B T  is used 
with T the absolute temperature and k, is Boltzmann’s constant. Assume that 

where V, is symmetric and p, and L, are respectively the momentum and position of 
particle i and m is the mass of the particles. Then it follows that 

in general and  integration over momenta gives 

where z is the fugacity given by 

(2.5) 

The grand canonical average of a function g( N, L ,  . . . LN, x )  is 

(2.6) 

In order to calculate the pressure P, i.e. the force on the right-hand wall, it is convenient 
to avoid the singularity by replacing VN by VNL which contains terms which describe 
the interaction of the particles with the wall at x = L. This will typically be a short- 
ranged repulsive potential but it is not necessary to specify it explicitly. Finally the 
limit will be taken in which this extra potential goes to zero, the hard wall case, and  
the original potential is recovered. 
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Let VN,(Ll . , . L N )  =CO except when O <  L, < L for all i and in particular 
VNL(L, L 2 .  . . L N )  = oc (exp(-pVNL) is continuous). V,, is also symmetric with respect 
to any exchanges of its arguments. In the hard wall limit 

V N L ( L 1 . .  . L N ) +  VN(f-1.. . L N )  if O <  L,  < L Vi 
+ E  

Then 
otherwise. 

=@(force on wall)NL. 

Then in the hard wall limit 

(a /aL)  In Z = PP, (2.7) 

This is the exact expression for the pressure of the finite one-dimensional system 
in the grand canonical ensemble. The result usually quoted in the textbooks is the 
zero field case [5] in three dimensions or  the asymptotic result P - In Z / p V  [6] in the 
limit V+  CO (assumed to be independent of the shape). In this work only pair potentials 
and an external field are involved, i.e. 

, = I  \ = I  * = I  

where V, is the external field and cp is the pair potential. Using the notation 

U =Pcp and z (x )  = z e x p ( - p v d x ) )  (2.9) 
the grand partition function can be written as 

(2.10) 

3. General relations for the grand partition function and the first-order approximation 

To find the pressure at some intermediate point x1 for 0 < x1 < L the system should be 
replaced by one with the same values of p and z (x )  for 0 < x < x, and zero outside 
this range. The system is then confined to the interval O < x < x ,  and then the same 
calculation gives P(x l ) .  

The pressure P ( x = L )  is defined by these equations in terms of p and z(x) .  In 
order to recover a sensible macroscopic limit L-. CO, z (x )  should be scaled with L such 
that zL(x) = z*(x /L)  with z*(x) being kept fixed. This is expected to give P ( x )  with 
the same scaling property, i.e. PL(x)  = P*(x/L)  where PL(x)  is the pressure P ( x )  for 
the system of length L. Under these conditions local thermodynamics is expected to 
be valid [2]. In this work I shall not consider this point any further since my main 
interest here is to study the uniform case using the external field as a mathematical 
tool for deriving the necessary equations and  then setting the field to zero afterwards. 

For a uniform system zL(x) = z, the fugacity. This can be inverted in principle to 
give z (p ,  P )  or p ( p ,  P ) ;  however, p may not be unique in which case the smallest 
value must be chosen to represent the stable thermodynamic state; other values would 
correspond to metastable or unstable states. As explained by Callen [7] all other 
thermodynamic functions can be obtained from this relation. 
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From (2.10) it is straightforward to show that 

or expressed in terms of F = In 5 

eF{L’ z(x)}= z(L) exp[F{L, z (x )  exp[-u(L-x)]}- F { L ,  z(x)}]. (3.2) aL  

This, together with the initial condition F{O, z(x)} = 0, completely determines 
F { L ,  z(x)}. Equations (3.1) and (3.2) are equivalent to the general relation given by 
Baxter [3] which was used in his treatment of the case when u (x )  = a exp(-yx) with 
and without a hard core. For an argument to show that Baxter’s equation, together 
with the initial condition, is necessary and sufficient to determine the grand partition 
function see [S, last section]. Applying the thermodynamic limit to (3.2) using (2.7) 
gives 

(3.3) 
1 

P =  lim -z(L)  exp[F{L, z(x)  exp[-u(L-x)]}-F{L, ~ ( x ) } ] .  
I.-.= P 

Writing the argument of the exponential as A F ( L )  suppose A F ( L )  is replaced by an 
approximation G( 15) such that 

lim AF( L )  = lim G(  L)  
L-= L-x  

then (3.2) can be approximated by 

aF{L’ z(x)} = z (L)  exp[ G( L ) ]  aL 

(3.4) 

(3.5) 

but 

1 
P = lim -z(L)  exp[ G( L ) ]  

L - s  P 
exactly. Hence it appears that a reasonable approach to  calculating P is to find a 
suitable expression G ( L )  such that (3.4) holds and (3.5) can be solved. Although I 
have not succeeded in doing this a reasonable first attempt is to replace A F (  L )  by the 
first-order term in its functional Taylor expansion about F { L ,  z(x)} which is 

where f ( x )  = exp[-u(x)] - 1 is the Mayer function 

4. The general theory of non-linear first-order FDE 

The resulting functional differential equation (FDE) is a member of a large class which 
have a simple solution. Since, to my knowledge, this material has not been published 
elsewhere I would like to develop in this section the basic technique for solving these 
equations and in the next section the solution which can be found in a class of equations 
of this type. The method is obtained by applying Volterra’s method of analysis described 
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as ‘that of passing from the finite to the infinite’ [4] to the theory of non-linear partial 
differential equations (PDE) with N independent variables [9]. Let F be a functional 
of z ( x )  and a function of L E  R+ where z ( x )  : R+ + R+ and R’ is the set { x :  0 < x <CO}.  

Define the functional derivative 

It will also be convenient to write 

(4.1) 

Then clearly 

6 a F { L , z ( x ) }  -_ a 6 F { L , z ( x ) }  - 
~ z ( x )  aL aL ~ z ( x )  (4.2) 

and 

which is an application of the chain rule. 
I shall consider here only first-order FDE. The general fo- I S  

where G is a functional of z ( x )  and S F / G z ( x )  and is an ordinary function of L and F. 
In order to find the solution F { L ,  z ( x ) }  of (4.4) satisfying a suitable boundary 

condition the first step is to derive the equations for the characteristic strips which 
correspond to equation (2) on p 97 of [9]. These are equations (4.8), (4.9), (4.14) and 
(4.15) below. However the reader may assume the validity of these equations and 
follow the rest of the argument which shows how the required solution is constructed 
from the solutions of these equations and the initial conditions. 

The characteristic strips of (4.4) are specified by giving z ( x ) ,  F, d F / a L  and G F / S z ( x )  
as functions of L and z o ( x ) .  z o ( x )  is constant for each strip and plays the role of 
c l . .  . tnPl  of [9]. 

I shall use the following notation: 

4 L ,  x )  = Z L ( X )  = Z(X){L,  zo(x) l  ( z o ( x )  = Z L ( X ) I L = O )  

(4.5) 

dF{L ,  Z L ( X ) }  - - dF*{L,  zo(x) l  K ( L ) =  
aL aL ’ 

It should be clear that this derivative is to be taken at constant z ( x )  rather than at 
constant z o ( x ) .  

The condition needed to specify the characteristics is that the FDE involves no 
derivatives exterior to the characteristics when expressed in terms of L and z o ( x ) .  
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Eliminating dF{L, zL(x)}/aL from (4.3) and (4.4) gives 

(4.6) 

This equation is a relation involving L, zL(x),  F, dF/dL,  (d/dL)z,(x) and 6F/Sz(x).  
The requirement that this equation involves only the first five terms is equivalent to 
requiring that the operator 

6 

6 (SF{L, ZL(X))/ W X )  1 

dzL(x) + SGIL, ZL(X) ,  F, t(x)} 

taken with these quantities constant, applied to (4.6) gives zero, i.e. 

= 0. 
dL W x )  

Equation (4.3) gives 

Equation (4.7) can be written as 

Apply the identity (4.3) to dF{L, z'(x))/aL gives 

(4.7) 

(4.10) 

and apply (4.3) to 6F{L, zL(x))/6z(x) gives 

(4.1 1) 

Equation (4.4) may now be regarded as an identity once the correct form for F has 
been found. Applying a/dL gives 

6*F{L, ZL(X)I  dZL(X1) 
Gz(x)Sz(x,) dL ' 

a2F{L,z(x)} -- - dG aGaF +--+joWdx--( 6G a SF{L, z(x)} 
a L' dL a F a L  s t ( x )  aL S Z ( X )  

and applying S/Sz(x) gives 

). (4.13) SZ(X) aL S Z ( X )  aF ~ z ( x )  

Elimiaating a*F/aL' between (4.10) and (4.12), with z (x)  replaced by z,(x), gives, 
with (4.5), 

6 aF{L, z(x)} SG aG SF{L, z(x)}+ +- -- - 
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Because of (4.7) this simplifies to 

aG +- K ( L )  d K ( L )  aG dL - dLlz=,L dF/,=.. 

Eliminating 

from (4.11) and (4.13) evaluated at z = z L  gives, using (4.5), 

Again, because of (4.7) this becomes 

657 

(4.14) 

(4.15) 

The required equations for the four functions in (4.5) are (4.8), (4.9), (4.14) and (4.15). 
Suppose the initial conditions for F a r e  given on an initial manifold { L, z(x)} as follows: 

F = R{z(x)} L=O z(x)  = zo(x). (4.16) 

Then from (3.5) 

(4.17) 

To verify the strip equations it is only necessary to show that (d/dL)(aF/dL- G) = 0 
for every strip. This calculation is a straightforward application of the chain rule 
provided one remembers that z(x) ,  SF/Sz(x), F, aF/dL are to be regarded as indepen- 
dent variables, each of which is a function of L. Since the initial conditions for every 
strip at L = 0 are chosen to satisfy (4.4) it follows that (4.4) is satisfied identically by 
the solutions of the strip equation. To obtain F{ L, z(x)} as required it is only necessary 
to eliminate zo(x) in favour of z(x)  in the expression for F{L ,  z(x)}. Before proceeding 
to the special case I want to consider I shall need two lemmas which are quite 
straightforward to prove; the first is well known [4]. 

Let f ’ ” ’ ( x l  . . . x , ~ )  be a symmetric function of its N arguments, i.e. 

f ” I (  x 1 . . . x,y ) = f ‘ ’ ( xp ( . . . xp ( ” ) ) 
where p is any permutation of the indices 1, .  . . , N.  Then by using the definition (4.1) 
and exploiting the symmetry it is easy to show that 

N - l  

dxN-I  n w(x,)f‘”’(xl . .  .x , - , ,x) .  (4.18) = I O i  dx, 5“ d x 2 . .  . I:‘-’ 
0 0 , = I  

The general form of a functional Maclaurin expansion of a functional is 

(4.19) 
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By using the above result it follows that 

Hence 

= N = l  5 [Ldrw( i ) j ] :dx l  0 / : ‘d~, . . .”‘’-~dx,-~ 

= H(w(x)e(L-x)}-f(O).  (4.21) 

By replacing H{w(y)} by GM{w(y)}/Gw(x) (4.21) can be written as 

A term in M of the form 

loU dx,w(x,)fi!f’(x,) 

gives a termfh)(x) in H which is identified withy:’. Hence if M is a functional of 
the form 

Then f:) = 0 in (4.22). 

5. A more explicit solution of a class of FDE 

Returning to the main argument I now consider the case when 

where w(x) = z(x)t (x) .  First one has to write down the derivatives of G with respect 
to L, F, z(x) and t(x):  

aG _-  
dF-O 
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Equations (4.9), (4.14) and (4.15) can be written as follows using (4 .5) :  

where 

and 

( 5 . 3 )  

(5 .4)  

This set of equations together with (4.8) will now be solved with the initial conditions 
F{O, z(x) }  = 0. 

Equation (5 .1)  gives (d /dL)  In A(  L, x) = - A ( L ,  L ) E ( L ) X ( L ,  x). Hence 

(5.6) 

Similarly (5.3) with B ( 0 ,  x) = 0 gives B ( L ,  x )  = 0 for L <  x and B ( x ‘ ,  x )  - B ( x - ,  x )  = 

E l x )  SO B ( x - ,  .x) = E ( x )  and for L >  x 

d In B (  L ,  x) 
d L  

_- - A(L, L ) E ( L ) X ( L ,  x) .  

Hence 

(5.7) 

if x i L and zero otherwise. Set x = L - E and define g(  L )  = A( L, L )  then 

(5.8) 

A and X are here assumed to be continuous functions of both their arguments. Hence 

g ( L )  = A(0, L )  exp( - /o‘dsg(s )E(s )X(r .  L )  ) . 
A(L, x ) B ( L ,  x )  = E ( . x ) g ( . u )  i f . x<  L 

= O  otherwise 

and it follows that 
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and 

s2H{E(x)g(x)e(  L - x)}  
Sw(s) Sw(L)  

X ( L , x ) =  

Using the identity (4.22) gives 

/oLdsE(r)g(r)X(r, L ) = l n  E ( L ) .  

Combining this with (5.8) gives A(0,  L )  = g( L ) E (  L ) ;  hence 

A(L,  x)B(L, x )  = A(0, X )  i f x <  L 

= O  otherwise. (5.9) 

Using (4.22) again gives 

The LHS of this is 

loL ds E(s)g(s )X(s ,  x) .  

Hence (5.6) can be written as 

Combining (5.9) with (5.10) gives 

= O  otherwise 

and from above 

SH{A(O, X ) ~ ( L - X ) }  
E ( L ) = e x p  

(5.10) 

(5.11) 

(5.12) 

The next steps are to use (5.10), (5.11) and (5.12) to evaluate (5.2) to obtain K ( L )  
and finally to use (4.8) to evaluate F ( L ) .  From (4.16) it is easy to show that d K ( L ) / d L  = 
dA(0, L)/dL. The initial condition is 

Hence K ( L )  = A(0,  L )  (5.13) and from (4.8) since F ( 0 )  = 0 

S*H{A(O, x ) ~ ( s  -x)}  
6w(x) 6w(s) 

F (  L )  = loL ds A(0,  s)(  1 - 1; dx A(0,  x)  

Combining (5.10) with (5.14) gives the required solution, i.e. the solution of 

(5.13) 

(5.14) 

(5.15) 
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with 

(5.16) 

and the initial condition F{O, z ( x ) }  = 0 can be written as 

where h ( x )  is given by 

(5.18) -SH{ h ( x )  e( L - x ) }  f o r O < x < L .  

6. Equations for the correlation functions n, and n, in general and the translation 
invariant case 

If H { z ( x ) }  is chosen to be 

joxdr  lo' d s z ( t ) z ( s ) f ( t - s )  

then the above result reduces to the following. The solution of 

with F{O, z(x)} = 0 is 

F(  L, z ( x ) } = joL d t h ( t ) ( 1 - lo' d s h ( s ) f (  t - s ) ) 
where h ( x )  is given by 

z(x) = h ( x )  exp( -loL dt  h ( t ) f ( x  - I ) ) .  

(6.2) 

(6.3) 

Hence equations (6.2) and (6.3) provide an approximate expression for FIL ,  z ( x ) }  as 
defined in equation (3.2). It is possible to obtain from this not only the thermodynamic 
functions, as described above, but also all the correlation functions for the system in 
equilibrium as was pointed out by Percus [ 101 among others. Probably the easiest way 
to do this is to define the k-particle distribution functions excluding coincidences by 

Then by repeated functional differentiation of (2.10) one obtains 
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etc, and in general 

To test the accuracy of the approximation (6.2) and (6.3) I shall use it to calculate n ,  
and n, for arbitrary L and z ( x )  and the pressure for fixed L and constant z. For the 
latter I have also obtained a power series in z which can be checked against the well 
known result for the thermodynamic pressure. 

PP for arbitrary values of L and z ( x )  is obtained by first solving for h ( x )  (which 
should more precisely be written as h { x ;  L, z ( x ) } )  in equation (6.3) and substituting 
the result in (2.7) using (6.2). For the uniform case z ( x )  = z ;  using the expansion 

h ( x ;  L, z )  = z N h ( x ;  L, N )  
N =o 

gives 

2 z N h ( x ;  L , N ) = z e x p  d t h ( t ;  L , O ) f ( x - t )  
N=O 

x [ f <( loL dr  h ( t ;  L, l ) f ( x  - t )  
J = o J .  

x [  f 
k = o  k 

Equating coefficients of powers of z gives h ( x ;  L, 0) = 0, h ( x ;  L, 1) = 1 and 

h ( x ;  L, 2)  = loL d t f ( x  - t )  

d t f ( x  - t )  dsf( t - S )  I,' 
Hence for the uniform system 

;c 

P P ( L )  = c b*z' 
i = l  

where 

b T = 1  b? = I,' dt f ( r  - L )  

and 

b? =;( loL d s f ( L  - s))* + joL dr  I,' ds f ( t  - s)f( t - L )  (6.6) 
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from which it follows that b: = 61, 6; = 2 but 6: # 63 ,  etc, where b, are the exact values 
which occur in the series 

oc 

P P  = 2 6,z‘ 
, = I  

Considering next the correlation functions it is straightforward to obtain from (6.2), 
(6.3) and (6.5) closed equations for the correlation functions for any number of particles. 

Functional Taylor expansions of these WRT z ( x )  would show how these results 
compare with other approximations and the formally exact theory given by Stell [ 111: 

where 

can be obtained from an  integral equation found by differentiating (6.3) 

From (6.5) using F = In E I obtain 

(6.8) 

(6.9) 

x { m , ( s ,  x , ) m , ( t ,  x , ) + h ( s ) m 2 ( r ,  X I  , x J } I  (6.10) 

where m,( t ,  x i ,  x 2 )  satisfies the following equation obtained by differentiating (6.8): 

- S ( x - x , )  d s f ( x - s ) m , ( s , x , ) - z ( x )  d s f ( x - s ) m , ( s , x , , x , ) .  

(6.11) 

The density n l ( x l )  is defined by equations (6.7) and (6.8) and n 2 ( x , ,  x?) is defined by 
(6.9), (6.10) and (6.11). Suppose that the system is uniform, i.e. z ( x ) = z  and z is 
independent of L, then for small systems with nearly hard core potentials packing will 
force n , ( x ) ,  and presumably the other functions defined above, to be oscillating with 
period of the order of the range of the pair potential at high densities. However, 
provided L is large compared with the range of the pair potential it is reasonable to 
assume that h ( x l ) ,  n , ( x , ) ,  n , ( x , ,  x 2 ) ,  m,( t ,  x,), m2(t ,  x l ,  x 2 )  are all translation invariant 
(provided O<< x 1  , x 2 ,  t << L ) .  Leff and Coopersmith [ 121 have shown that this holds 
rigorously for n,, 1 S J s  N for the canonical ensemble with finite N and L provided 
that the pair potential is zero beyond some range R, L > 2( N - j ) R  and ( N  - j ) R  < x ,  < 
L - ( N - j ) R ;  hence the above functions can be written as 

h, n , ,  n , ( x , - x , ) ,  m , ( f - - x , ) ,  m d t - x , ,  t - x , )  (6.12) 

lc: I,: 



664 J H Nixon 

respectively. From their definitions m2 and n2 are symmetric with respect to exchange 
of x, and x2 . Also f (x)  =f(-x) and I shall assume that under these conditions m, 
is symmetric and m, and m, decay quickly enough for their Fourier transforms to 
exist. Under these assumptions an asymptotic analysis of P P  and the correlation 
functions is possible whici gives simple results. 

Replacing h{x; L, z(x)} in (6.3) by h ( L ,  z) gives 

z = h ( L ,  z) exp(-Jh(L, z ) )  
where 

J = l O L d s f ( x - s )  (6.13) 

and J is almost independent of x when O<< x<< L. Hence it follows that h = h ( z )  only; 
and since z>O, assuming that J < O ,  the solution of 

h ( z ) = z  exp[Jh(z)] (6.14) 

Under these conditions equation (6.2) gives F ( L ,  z) = 

(6.15) 

is unique and positive. 
h (z)L( l -  Jh(z)/2) and hence 

P I "  h( 1 - Jh/2). 

The series expansion derived from this is 

P P =  Z + $ Z ~ J + ; Z ~ J ~ + $ ~ J ~ + .  , . 
the first two terms of which are the exact values and they agree with results for finite 
systems found earlier. 

Under the above assumptions the correlation functions can be obtained from 
equations (6.7)-(6.11) which can then be greatly simplified. Equation (6.8) gives the 
following: 

S(x - X I )  = m,(x - X I ) - -  z dsf(x - s ) m , ( s  - X I ) .  
h loL 

The singular part of m ,  can be separated out by writing 

ml(x - X I )  = mT(x - X I )  +AS(x - X I )  (6.16) 
where mT is continuous. Substituting this and choosing h = Az to cancel the singular 
terms gives the following: 

Fourier transforming this gives 

and hence 

h J  
z ( l / h  - J) 

&(O) = 

dsf( x - s )  m T( s - x, 1. 

(6.17) 

where l ( 0 )  = J  and the Fourier transform is defined by 

f ( k )  = l dx exp(ikx)f(x). 
I 

-cx 
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Using these results (6.7) gives the simple result n,  = h ;  hence the equation of state is 
given by 

P P  = n,  - f J n : .  (6.18) 

For the pair correlation function n, equation (6.11) gives, using assumptions (6.12), 

- z loL ds f( x - s ) m f ( s + y , - x, s + y ,  - x ) 

where y ,  = x - x1 and y ,  = x - x,. 
By introducing m ( y , ,  y J  = m 2 ( y l ,  y 2 )  with y3  = y ,  - y ,  this can be simplified to 

1 1 
m(y1 f Y3) = y T ( v l ) m T ( Y l  +Y3)+;mT(Yl + Y 3 )  6 ( Y J  

L - x  1 
+-mT(y1) 6(Yl+Y3)+h 5 dsf ( -s )m(s+y, ,yd .  

--x Z 

By Fourier transforming this equation WRT y1 and solving for m this yields 

1 
+ - ( m T ( Y 3 )  + exp( -i ky3) m T ( Y J  1). 

Z 

In this work I shall only need the result for k = 0 which is 

( l / h ) m T  * mT(y3)+(2 / z )mT(y , )  
1 - hJ f i ( 0 ,  Y 3 )  = (6.19) 

where * is the convolution operation. Equations (6.9) and (6.10) with assumptions 
(6.12) yield 

-!! loL dtf( t  - x 2 ) m T ( 1  - x , ) - -  dsf(x, - s )mT(s  - x z )  
Z Z loL 

Introducing the radial distribution function g ( x )  by n 2 ( y )  = n : g ( y )  gives 
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Taking the Fourier transform of this equation and using (6.17) yields the surprisingly 
simple result 

c ( x )  = f ( x )  (6.20) 

where c ( x )  is the direct correlation function which is defined by the Ornstein-Zernike 
relation 

g(x)  - 1 = c ( x )  + n , ( g  - 1) * c ( x ) .  (6.21) 

7. Summary and conclusions 

This work shows clearly that from F { L ,  z ( x ) }  it is possible, in principle, to derive all 
the thermodynamic functions and the correlation functions for any number of particles. 
The only approximation that has been made for the finite system is the first-order 
expansion of the term in the exponential of equation (3.2). It is hoped that it will be 
possible to systematically improve on this approximation by taking higher terms into 
account by expressing (3.2) as a system of constant coefficient linear functional 
differential equations. Simple results were obtained for the thermodynamics and the 
correlation functions for the system in the thermodynamic limit. In order to calculate 
g ( x )  from any proposed model pair potential (which may be given numerically) it is 
only necessary to use (6.20) and the Fourier transform of (6.21). To calculate the 
pressure only requires the integral J to be found. Then p P  is given in terms of h from 
(6.15) which satisfies a transcendental equation (6.14). This is to be compared with 
the existing approximation schemes which often require numerical iteration of integral 
equations. I believe that this fact, together with series expansion results stated here, 
will make this approximation (and its generalisations) useful in many applications of 
statistical mechanics despite the act that it is probably less accurate than some existing 
approximations at high densities. I also think that a systematic evaluation of the 
usefulness of the method can only be made after much subsequent work has been 
published. 

The assumptions concerning large uniform systems need careful consideration. A 
thorough account would attempt to justify them with rigorous mathematical argument 
rather than introduce them as additional assumptions. I am not able to do this yet 
and I think it only makes sense to do so within the thermodynamic limit of an exact 
mathematical treatment. 

On the purely mathematical side I have given the general method of solution of a 
non-linear first-order functional differential equation and I have applied the method 
to a subset of these equations for which the solution can be given explicitly in terms 
of the solution of a non-linear integral equation. This solution is a generalisation of 
the solution needed for this work and it may be useful in other fields. 
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